Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5768, 2024 03 08.
Article in English | MEDLINE | ID: mdl-38459123

ABSTRACT

The SARS-CoV-2 pandemic has highlighted the need to better define in-hospital transmissions, a need that extends to all other common infectious diseases encountered in clinical settings. To evaluate how whole viral genome sequencing can contribute to deciphering nosocomial SARS-CoV-2 transmission 926 SARS-CoV-2 viral genomes from 622 staff members and patients were collected between February 2020 and January 2021 at a university hospital in Munich, Germany, and analysed along with the place of work, duration of hospital stay, and ward transfers. Bioinformatically defined transmission clusters inferred from viral genome sequencing were compared to those inferred from interview-based contact tracing. An additional dataset collected at the same time at another university hospital in the same city was used to account for multiple independent introductions. Clustering analysis of 619 viral genomes generated 19 clusters ranging from 3 to 31 individuals. Sequencing-based transmission clusters showed little overlap with those based on contact tracing data. The viral genomes were significantly more closely related to each other than comparable genomes collected simultaneously at other hospitals in the same city (n = 829), suggesting nosocomial transmission. Longitudinal sampling from individual patients suggested possible cross-infection events during the hospital stay in 19.2% of individuals (14 of 73 individuals). Clustering analysis of SARS-CoV-2 whole genome sequences can reveal cryptic transmission events missed by classical, interview-based contact tracing, helping to decipher in-hospital transmissions. These results, in line with other studies, advocate for viral genome sequencing as a pathogen transmission surveillance tool in hospitals.


Subject(s)
COVID-19 , Cross Infection , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/genetics , Genome, Viral/genetics , Cross Infection/epidemiology , Cross Infection/genetics , Hospitals, University
2.
Nat Commun ; 15(1): 151, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167372

ABSTRACT

Unlike for DNA and RNA, accurate and high-throughput sequencing methods for proteins are lacking, hindering the utility of proteomics in applications where the sequences are unknown including variant calling, neoepitope identification, and metaproteomics. We introduce Spectralis, a de novo peptide sequencing method for tandem mass spectrometry. Spectralis leverages several innovations including a convolutional neural network layer connecting peaks in spectra spaced by amino acid masses, proposing fragment ion series classification as a pivotal task for de novo peptide sequencing, and a peptide-spectrum confidence score. On spectra for which database search provided a ground truth, Spectralis surpassed 40% sensitivity at 90% precision, nearly doubling state-of-the-art sensitivity. Application to unidentified spectra confirmed its superiority and showcased its applicability to variant calling. Altogether, these algorithmic innovations and the substantial sensitivity increase in the high-precision range constitute an important step toward broadly applicable peptide sequencing.


Subject(s)
Deep Learning , Algorithms , Sequence Analysis, Protein/methods , Peptides/chemistry , Amino Acid Sequence
3.
Genome Med ; 14(1): 38, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35379322

ABSTRACT

BACKGROUND: Lack of functional evidence hampers variant interpretation, leaving a large proportion of individuals with a suspected Mendelian disorder without genetic diagnosis after whole genome or whole exome sequencing (WES). Research studies advocate to further sequence transcriptomes to directly and systematically probe gene expression defects. However, collection of additional biopsies and establishment of lab workflows, analytical pipelines, and defined concepts in clinical interpretation of aberrant gene expression are still needed for adopting RNA sequencing (RNA-seq) in routine diagnostics. METHODS: We implemented an automated RNA-seq protocol and a computational workflow with which we analyzed skin fibroblasts of 303 individuals with a suspected mitochondrial disease that previously underwent WES. We also assessed through simulations how aberrant expression and mono-allelic expression tests depend on RNA-seq coverage. RESULTS: We detected on average 12,500 genes per sample including around 60% of all disease genes-a coverage substantially higher than with whole blood, supporting the use of skin biopsies. We prioritized genes demonstrating aberrant expression, aberrant splicing, or mono-allelic expression. The pipeline required less than 1 week from sample preparation to result reporting and provided a median of eight disease-associated genes per patient for inspection. A genetic diagnosis was established for 16% of the 205 WES-inconclusive cases. Detection of aberrant expression was a major contributor to diagnosis including instances of 50% reduction, which, together with mono-allelic expression, allowed for the diagnosis of dominant disorders caused by haploinsufficiency. Moreover, calling aberrant splicing and variants from RNA-seq data enabled detecting and validating splice-disrupting variants, of which the majority fell outside WES-covered regions. CONCLUSION: Together, these results show that streamlined experimental and computational processes can accelerate the implementation of RNA-seq in routine diagnostics.


Subject(s)
RNA , Transcriptome , Alleles , Humans , Sequence Analysis, RNA/methods , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...